Heat of Mixing of Some Binary Liquid Alloys
نویسنده
چکیده
There are a large number of binary liquid alloys the thermodynamic properties of mixing of which are not symmetrical about the equi-atomic composition—deviating maximally from those of the ideal alloys. Here we have considered three such alloys—indium-sodium, cadmium-sodium and copper-tin—and tried to calculate their heat of mixing at different concentrations of the ingredients. The liquidus lines of these alloys reveal that the constituent species form complexes. So, we have considered a quasi-lattice chemical model for computation of the thermodynamic entities. It is a statistical model in which grand partition function is used assuming that the energy of a given nearest neighbour bond is different if it belongs to the complex than if it does not. For each alloy we have started with the expression for excess free energy of mixing according to this model and computed the free energy of mixing for different concentrations of the metals within it by deriving the value of interaction parameters through successive approximation method. Thereafter, the expression for excess entropy of mixing is taken into account and the entropy of mixing is computed for different concentrations after finding out the temperature derivative of interaction parameters by the method of successive approximation. Finally the heat of mixing is calculated from these free energy of mixing and entropy of mixing on using the standard thermodynamic relation. The results explain the observed asymmetry in the heat of mixing of the said binary liquid alloys around equi-atomic composition.
منابع مشابه
VLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules
By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...
متن کاملHeat of Mixing and Activities in Liquid Al-Sn Alloys
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملExperimental Investigation in Pool Boiling Heat Transfer of Pure/Binary Mixtures and Heat Transfer Correlations
Nucleate pool boiling heat transfer coefficient have been experimentally measured on a horizontal rod heater for various liquid binary mixtures. Measurements are based on more than three hundred data points on a wide range of concentrations and heat fluxes. In this investigation, it has been confirmed that the heat transfer coefficient in boiling solutions are regularly less than those in p...
متن کاملNew Local Composition-Equation of State Mixing Rules for High Pressure Vapor-Liquid Equilibria Using EOS/AE
In this study using Equation of State/ Helmholtz excess energy function, EOS/AE, two new local composition-Equation-of State mixing rules, LCEOS1 and LCEOS2 were developed in which the energy interaction parameters were expressed in terms of attractive and repulsive parameters of the cubic equation of state. The EOS/AE models are applied for equilibrium calculation of nat...
متن کاملThe Enthalpies of Mixing of Liquid Ni-Sn-Zn Alloys
The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections xNi/xSn ≈ 1:9, xNi/xSn ≈ 1:6 at 1073 K and along two sections xSn/xZn ≈ 9:1, xSn/xZn ≈ 4:1 at 873 K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010